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The stress field in a matrix containing a 
partially debonded elliptic inhomogeneity 
of identical Poisson's ratio 

B. L. K A R I H A L O 0 ,  K. V I S W A N A T H A N  * 
Department of Civil Engineering and Surveying, University of Newcastle, New 
South Wales 2308, Australia 

Studies on the stress field in an infinite elastic matrix containing an elliptic 
inhomogeneity that has debonded over an arc of its boundary are reported. The 
matrix is under plane strain conditions. The solution is obtained by an extension of 
Eshelby's equivalent, inclusion technique, but is restricted to the case when 
Poisson's ratios of the matrix and inhomogeneity are equal. Numerical results are 
given for the stress-intensity factors at the tips of the debonded arc and for the 
relative displacements across the debond. 

1. I n t r o d u c t i o n  
The mechanical properties of composites, 
especially their fracture toughness, are strongly 
influenced by the quality of bond between the 
matrix and reinforcing inhomogeneities. Yet, 
given the fact that the latter generally act as 
stress raisers, debonding seems to be inevitable. 
The study of the behaviour of a composite in 
which the inhomogeneities have debonded par- 
tially or fully from the matrix is therefore 
important in gaining an understanding of its 
fracture toughness. 

The mathematical problem corresponding to 
partially or fully debonded inhomogeneities in 
an elastic matrix is far more complex to analyse 
than the already tedious problem resulting from 
perfectly' bonded inhomogeneities [1-5]. In a 
recent investigation [6] (this paper also contains 
other useful references), the present authors cal- 
culated the stress field in an infinite, elastic 
matrix containing a partially debonded elliptic 
inhomogeneity. The matrix was under anti- 
plane strain conditions. The solution was 
obtained by an extension of Eshelby's equivalent 
inclusion technique [7, 8]. In this paper the 
technique is further extended to the study of a 

partially debonded inhomogeneity under plane 
strain conditions. The extension is by no means 
straightforward, although several simplifi- 
cations result from equality of Poisson's ratios 
between the matrix and inhomogeneity. It is this 
special case which forms the subject of the 
present paper. The general case of arbitrary 
Poisson's ratios requires an altogether different 
approach; this solution will be reported in a 
separate communication. 

From the solution of the stress field we cal- 
culate the stress intensity factors at the tips of 
the debonded arc and the relative displacements 
across the debond. Two numerical examples 
have been studied in detail. 

2. S t a t e m e n t  of  the  prob lem 
Fig. 1 shows the geometry of the matrix along 
with the elliptic inhomogeneity (f~) and the 
co-ordinate axes. (2, #) and (21, #l) denote the 
Lam6 constants of the matrix and inhomogen- 
city, respectively. The solution of the equation of  
equilibrium 

~r~j(u) + X~ = 0; i , j  = 1,2 (1) 

can be formally represented as 
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Figure 1 The debonded elliptic inhom- 
ogeneity, showing the coordinate axes 
and the remote stress-field. 

Um(X ) = - -  fQ(Tij~(x')Gim(X , x ' ) d ~ r ~ ( x  ' )  

t "  
- ~-r ~ ' ( x ' ) ~ [ 6 ~ ( x '  x')]nj(x')dr(x') 

(2) 

Here, F denotes the arc of  the debonded bound- 
ary, a* are the eigenstresses associated with the 
(unknown) eigenstrains e* distributed over the 
region of  fl,  and ?~(x) are the dislocation den- 
sities across the debond for a homogeneous 
material. The unknowns ~* and ?~(x) are to be 
determined from Eshelby's equivalence relation 

a*(x) = 6#(u) + 6~ (x = 1"~) (3) 

and the traction free boundary condition across 
the debond 

{%(u) + ~~ = O, (x = F) (4) 

where 0. % is the far-field applied stress, nj(x) is the 
unit outward normal to F at x, and 5u is the 
stress-operator with (2, #) replaced by (~, ~) 
where 

]~ = (~" - -  h i ) ,  ~ = (/~ - -  ]~1) ( 5 )  

Finally, Green's function Gu(x, x ' )  in Equation 

2 is given by 

Gu(x, x') 

- (3 - 4v)6ijlog k]/8rc#(1 - V) 
= L-~-r  J 

(6) 
where 

~z, = ( x ; -  x , )  (7)  

= Ix - x'l (8)  

and v is Poisson's ratio. 

3. Solut ion of Equations 3 and 4 
Due to debonding, the eigenstrains e* will con- 
sist of both singular and non-singular parts, the 
former being absent for perfect bonding. Let us 
assume that 

, l  p , I I  e* = e,y + - u  

and correspondingly 

or* II a *  = ~ * ~ +  _,~ 

where 

r = 26u(e*l + e*2) + 2#e* (9) 

.1 denote the non-singular Here, e *l and a 0 
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parts which will be in the form of a power-series 
like the applied strains 

e~. = ~ ~ ,,u ~ . ~  (10) 
.=0  /~=0 

Therefore we assume that 

e20 .1 "/J ~ a (11) C/j = D~B Xl X2 
~=0 

The expansion coefficients b~ are to be found in 
terms a~~ by equating the non-singular parts of 
Equation 3. The corresponding equation is 

=(0) ( X  ~*' (X)  = ~ , ) 

+ fn aN'(x')6ij[G~'(x' x')],~,df~(x'); (x  = s 

(12) 

where we have incorporated an integration by 
parts in the integral over fL 

The integral over f~ in Equation 12 can be 
evaluated as in our earlier work [6] and we can 
write it as 

;n *' ' - ~ aki,,(x )ao.[G (x, x')],k, dfl(x') = t~/J ~ ' ' ~  v'afl VVl ~2 

(13) 

where C'} are linear expressions in terms of b~p. 
The details of evaluating Equation 13 are given 
in the Appendix. The coefficients (2~ can be 
written in a more general form than that in the 
Appendix: 

C~iJ~ = ~kkq' ~kk'ijl~Pq~ (14) 

where 

B~ = 2a0(b~=~ + b2=~) + 2pb=~ (15) 

Summation convention over repeated indices is 
assumed throughout this work. Note that B~} are 
the expansion coefficients of ~r *~ corresponding 
to e *l (Equation 11). # 

A comparison of like terms of the expansions 
on both sides of Equation 13 leads to the follow- 
ing equations for B~~ 

--" l~Ick' F-IPq~ ( 1 6 )  B ~  = A~5 "Jr- Upq *'kk' i j  

where 

A~ = 26u(a~=~ + a2~) + 2pa~ 

A~ = ~6u(a~ + a2,~) + 2~a~ (17) 

with 7[, fi defined in Equation 5. 
Thus (B~f) can be solved from Equation 16 in 

terms of (2~p) which are known in terms of (a~ 
from Equation 17. Then Equation 15 gives (b~), 
thus completing the determination of the non- 
singular eigenstrains e *~. 

3.1. Singular part of the eigenstrains 
Next consider the singular part of the 
eigenstrains p,H From Equation 3 it follows vtj �9 

that these strains must satisfy the following 
equivalence relation 

G*"(x) = ~0(t)  

- ~i-~,~(x')nk,(x'),r~, {~/AC(x, x')l}dr(x') (18) 

and boundary condition (Equation 4) 

[nj(x) ~v 7k(x')n~,(X')akk, 

X {ag[G(x, x')]}dF(x') - nj(x)au(I)] 

= 4 ( x ) n j ( x )  + ~ j (x )y~  c~o~x~x~ (x ~ i3 
~,fl 

(19) 

In the above relations we have used the notation 

I ~" I m - -  ~ t 3 0 " i ~ ) l ( x t ) G i m (  X ,  x ' ) d f * ( x ' )  

(20) 

Also, the part of the f~-integral in Equation 4 
*~ is easily seen to lead to the arising from % 

last-term on the right hand side of Equation 19 
and it differs from the integral in Equation 13 
only to the extent that % replaces the 
#0-operator. Thus C~ in Equation 19 are given 
by a modified from of Equation 14, i.e. 

C~iJfl = ~ k k '  FlPq~tfl (21) U p q , t lk  k , ij 

where npq~ "-'kk'~ are obtained from ~ q ~  on replacing *'kk' i j  
(~[,/~) in the latter by (2, p). 

The solution of Equations 18 and 19 for 
a*"(x) and 7k(x) seems to be far more com- 
plicated than that of the anti-plane case [6]. 
However, when Poisson's ratios of the two 
materials are equal a procedure similar to that 
adopted in [6] may be followed. 

3.2. Special case of equal Poisson's 
ratios (v = vl) 

When v = Vl, assume that the eigenstrains e/~ II 
and eigenstresses rr *~I _u can be derived from a 
"generating" displacement u*" of the form 
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u*"(x) - u.,*"(x) 

~r Bk(x')nk,(x')%,{G"(x,  x ' ) } d r ( x ' )  

(22) 

This is justified because the singular part will 
arise only from a distribution of sources 
(dislocations) on the debonded arc F. Substitut- 
ing Equation 22 into Equation 20 leads to the 
result 

I m = ~rBk(X")nk,(X")akk,(~)dF(x ") (23) 

where 

= fa o'/jj[G(x', x")]Gi,,,(x, x')df~(x') 

;r [-~hf(X' - x")]Gi,,(x, x')df~(x') 

: - -  r l iGim(X , x " )  = - -  G i n ( x ,  x " )  

(24) 

Here we have used the fact that 

Gij,](G m) = - -  (~irn(~(X - -  X")  (25) 

and have defined 

~/i = (6i,, 6i2), = 1, 2 (26) 

In Equation 25 G m denotes the vector Gkm(X, X') 
at a fixed m, aim is the Knonecker delta and 
6(x - x') is the Dirac delta function. Employ- 
ing Equation 24 in Equation 23, we get 

I,, = - ~r Bk(X')nk'(X')akk'[Gm(X' x')]dr(x') 

(27) 

Substituting Equation 23 into Equation 2 the 
displacement vector Um may be written in a 
simple form 

u,.(x) = 

- -  ~ [ B i ( x "  ) -~ 7i(x')]nj(x')a~j[G'(x, x ' ) ] d r ( x ' )  

+ i .  , I  , trq (x )Gi,,,,i(x, x')df~(x') 
(28) 

Substituting Equations 22 and 27 into the 
equivalence relation (Equation 18) gives 

~r Bk(X')nk'(X')aU{akk'[G(x' ~')]}ar(x')  

= 3Or [8~(x') + ~,~,(x')lnk,(x') 

x ~{~MG(x,  x')]}dr(x') (x = ~) 

(29) 
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When v = v~(i.e. 2//, = 2~/#~), we have 

~/~ = ~I~ (30) 

In this special case the operators tr 0 and #0 are 
linear multiples of each other (see Equation 9), 
and Equation 29 has the simple solution 

Bk(x ) 2 - = ,~, '~' ~ ( x )  (31) 

The second relation between Bk(x ) and yk(x) is 
provided by the boundary conditions (Equation 
19). From Equations 19 and 27 it follows that 

nj(x) ~r {Bk(X') + 7k(X')}nk'(X') 

• ao{~MG(x, x')]} dr(x ')  = a~ 

+ n j ( x )~  t~,B..o x ~ x zB (x = F) (32) 

Note that on the debonded arc F 

x I = a(1 - xZ/bZ) I, - l ~  x2 ~ l 
(33) 

where 2l measures the span of the debonded 
region and a and b are the semi-major and semi- 
minor axes of the elliptic inhomogeneity. 

The unit outward normal ni on F is defined by 

(nl,/72) -----  (xl/a 2, x2/b2)/T(x) (34) 

where 

T ( x )  = ( x ~ / a  4 --k x2~/b4) �89 (35)  

Also note that, on F, 

dr(x')  = T(x')(a2/x'~)dx'2 (36) 

In view of the expected singular behaviour of 
the solution, we assume that 

[Bk(x') + ~Ax')] = ~ ( l  2 -- x;2) ~ 

k , k _12 x(7 k + ~'lXz+ yEX2 + . . . )  (37) 

Thus Equation 32 reduces to a singular inte- 
gral equation with Cauchy-type kernel 

1 f t  (l 2 ,2 �89 -- x2 ) Fi(x2, x l )dx;  

= Pi(X2)(--I < x2 < l); i = 

where 

1,2 

(38) 



k f 
= (~,o ~ + ~,x~ + ~ + . . . )  

(42) 

r,(x~, x;) 

dF(x')  
x T(x)nj(x)nk,(x ')  dx  i 

x au{o-ek,[G(x, x')]} (x; -- xz) 2 (39) 

It can be shown that 

F/(x2, xl) = ~ ~(m'), X~' ~2" (40) 
m,n 

where e(~), are defined in terms of ?~ in the 
Appendix. In Equation 38, 

pi(x2) = (x,/a2)ff~ 4- (x2/b2)ff ~ 

+ (x,/a2)(C~o + C[~ox, + C~',x2 + . . . )  
i2 + (x~/b~)(Cgo + <oX, + Ca]x2 + . . . )  

(41) 
where Xl is defined by Equation 33. 

Employing Equations 40 and 41 in Equation 
38, the integration can be performed term by 
term, and a comparison of both sides made after 
expanding them in power series of x2 to give the 
required relations for 7~. Up to the first order 
terms, these are 

I k( 12 ~k ) 2k l(4 ~ ) ]  r| + 4--02~ + Y ~-r + 7 r 

= s + Cg) + (% + CI~); O ,2) 
7 - r~ ~.~k ~k - ~<o + ~-r,2 

( "-I- ~1 k - - r~  q- q- T2 ~-rl0 

1 ( A i 2  = -~, | + Cgo) 

/ A l l  i2 " . 
al.~O, A,o C~ ~1 Ci~o~ (43) 

+ \ a  ~ + - b T + - ~ - + - ~ - )  , 

- -  - -  ~-'20 q- ~r22) L,O\-~.o2 r~ l ~.ik 

+ .  \ -~-o ,  - ri~ + U ~  / 

+ ~ e-oo + r~o 

1 {A"oo + " -- C[~) - 2 - ~ \  cg )  1 /  ,, ~ A ~ o  + 
/ 

1 {A,~ ) + ~ \  0, + C~'] (44) 

Here, i, k = 1, 2, and summation over repeated 
~k 

indices is assumed, rmn are defined in the Appen- 
dix, while A~ are given by Equation 17. This 
completes the determination of the singular part 
of the eigenstrains , ' ~  ~lj �9 

4. Stress-intensity factors and 
relative displacements of the 
debond faces 

The singular behaviour of the stresses at the tips 
of the debonded arc can be studied by applying 
the stress-operator to Equation 28 and retaining 
only the singular parts given by the integral 
over F: 

z, =-- rrijnj = -- nj~ r [Bk(x') + 7k(x')]nk.(x') 

x ~0{crMG(x, x')l}dr(x') 

1 ( f  - xi2)�89 x'z) dx  i 
2=r(x) ~ -(x7 -- x~) ----~ 

I 
2~T(x) J~v (x~ - x2) 2 

(l 2 - ~2 J ~z.. 

\~'" dx~ 

- -  Z } r(e(i) X _1.._ ~( i )  ~ 2  A,(i)y.3 
2rcT(x) tt 00 2 ~01~2 + ~'0>'2 + . - . )  

[,w(i) ~ 2  ,w(i) ~3  at(i) ~ 4  
+ v,qo"-2 + ~n-'.2 + ~2~-2 + . . . )  

[,~(i) ~3 ~,(i) .,.4 ~(i) .w5 
+ ~'20 ~2 + ~,:l--2 + ~=~2 + . - . )  

1 
q- '"  "] (x 2 _ 12)�89 (Ix21 --' l + 0)(45) 

Resolving r~ in the normal (n~) and tangential (t~) 
directions and letting x2 -* ___ l we obtain the 
stress-intensity factors at the debond tips as 
follows. First we write the normal and tangential 
stresses as 

~nn = zini = K+/(2nd0) ~ (46) 

~nt  = "~ili = K~ /(2rcdo) �89 (47) 

where _+ refer to x2 = + l and do is the distance 
along the tangent f rom either of the tips. The 
stress-intensity factors K + and KI~ are given by 

K + = K ~ n  + + K f n f  (48) 

KI~ = K ~ t (  + K f t f  (49) 
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where 

.-+ - ( n ? ,  n ~ )  

t -+ - ( t ? ,  t ~ )  

12�89 

and 

- ~ +  b 4 J  

(50) 

(Trl)�89 + aElE/b4) ~ 
K + = + 

- -  { l 2 + a212"~ �89 

�9 '~(~)~ l • {~(g + [~c0'? + ~,0, 

+ t~02r'~(i) ..1_ g{? .+. g(2~] l z + . .  .} (i = 1, 2) 

(51) 

where a~), are defined in the Appendix. The non- 
dimensional stress-intensity factors are defined 
by 

Xfi, /fi,~,/(~) (52) 

The "effective" relative displacement of  the 
debonded faces is given by 

Afik = Bk(x) + 7k(x) 

1 (t 2 x~)~(~0 ~ + ~l~X~ + ~ x ~  + . . . )  
27r 

(53) 

AG can be resolved in the normal and tangential 
directions to yield 

(Aft)._+ = Ailing, (54) 

(aft),_+ = afiktk+ (55) 

5. Numerical examples 
We illustrate the procedure by means of a 
specific example. The applied strain (Equation 
10) we take in the form 

e ~ = (ag o + ai{oXl + aglx2) (56) 

where we have retained terms only up to first 
order in x. We assume correspondingly the non- 
singular part of eigenstrains: 

* l  . . . .  e o = (bgo + b'{oXl + b~l X2) (57) 

The Relations 14 defining C~, for this case are 
explicitly given in the Appendix. B~~ can be 
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solved from Equation 16, and b~, from Equation 
15. Thus the eigenstrains e *~ in Equation 57 are 
determined. 

Next CrY, are obtained by merely replacing ([, 
/2) by (2, #) in the expressions for/37~k,~ given the 
the Appendix. This allows the determination of 
~ from Equations 42 to 44. From Equations 31 
and 37 we finally obtain the functions 7~(x) and 
/~,(x) 

l ;~1 ( l  2 _ x~)~ 
7k(x) - 27r 2 

k 2 • (~0 ~ + ~ x ~  + ~2x2 + . . . )  (58)  

1 2 - 2 1  
Bk(X) = 2re 2 (12-- x2)�89 

k 2 x (7o k + 7~x 2 + ~2x2 + . . . )  (59) 

Using a~  obtained in the Appendix, the 
stress-intensity factors can be found from 
Equations 51 and 52. The relative displacements 
across the debonded arc F are given by 
Equations 53 to 55. 

For  the numerical calculations we have con- 
sidered the following two loading cases. 

Case 1 

e~ = 1, e~ = e~ = 0 (60) 

For  this case, it follows from Equation 56 
11 

a00 = 1 

11 11 0 
a l o  = a01  = 

12 22 0, for all m and n. (613 amn ~ amn ~- 

The solution is symmetric about x2 = 0. Hence 
the stress-intensity factors and relative displace- 
ments are shown only for the region xz > 0. 

Figs. 2 and 3 show the variation for/(~ and/s 
with respect to the debond size (//b) for several 
values of  the ratio (b/a) of the elliptic 
inhomogeneity and for two values of the par- 
ameter 2~/2 = 20 and 50. Here, and in the 
sequel, Poisson's ratio has been chosen as 
v = v~ = 0.3. The debond size affects the stress- 
intensity factors significantly, especially for large 
values of  b/a. 

Figs. 4 and 5 show the normal and tangential 
relative displacements across F for b/a = 0.4 
and 0.8, respectively. In both cases, we have 
assumed 21/2 = 20 and v = vl = 0.3. 

Case 2 

e~ = 1 + xl + x2, e% = e~ = 0 

(62) 
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Figure 2 Stress-intensity factor/~i corresponding to the applied strain (Equation 60). 21/2 = 20 (solid lines) and 21/2. = 50 
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Figure 3 Stress-intensity factor/(11 arising from Equation 60. Key as in Fig. 2. 
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Figure 4 Relat ive displacements o f  the debonded faces due to Equat ion  60.21/2 = 20, b/a = 0.4 and v = v x = 0.3. N o r m a l  

disp lacements  are  shown by sol id  l ines and  t angen t ia l  d i sp lacements  by  b roken  lines. 

In this case, 

11 = 1, 11 1 aN = 1, al0 a01 = 

12 22 am. = amn = O, for all m and n (63) 

I t  is obvious  tha t  the results will not  be 

8 I t 

symmetr ic  abou t  x 2 = 0. Figs. 6 and 7 show the 
stress-intensity factors  on either side o f  x 2 = 0 
for  21/2 = 20, and  v = vt = 0.3. Again,  it is 
noticed that  for  large values of  b/a, the fluc- 
tua t ion  with respect  to the debond  size (l/b) is 
prominent .  

I I 
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/ ,, 
/ N 

- , , ~ \ \  
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I~ i I 
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�9 - I 

I 
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/ 0.4 
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i I i I ~ \ \  

/ / /  .wE.8 \ ' \  

L I I -  ..... I -"----~I I 
0 0.2 0.4 0.6 0.8 1.0 

x/z 

Figure 5 Rela t ive  d i sp lacements  of  the debonded  faces due  to E q u a t i o n  60. 21/2 = 20, b/a = 0.8 and  v = v I = 0.3. 
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Figure 7 The s t ress- intensi ty  fac tor  /~II for the appl ied  s t ra in  (Equa t ion  62). 21/). = 20, and  v = v I = 0.3. (Solid l ines 
represent  x 2 > 0 side of  the d e b o n d  and  b roken  lines x 2 < 0 side of  the debond. )  
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Figure 8 Relative displacements across the debonded faces corresponding to the strain (Equation 62). 21/2 = 20, b/a = 0,4, 
v = v~ = 0.3. Normal  displacements are shown by solid lines and tangential displacements by broken lines. 

Figs. 8 and 9 show the relative displacements 
across the debond F for - I ~< x2 ~< l for the two 
cases b/a = 0.4 and 0.8. In both cases, we have 
chosen 21/2 = 20 and y = ?~ = 0.3. 

Apparently peak values occur near the tips for 
large values of the ratio lib. This may be due to 
the restriction on the Poisson ratio. 

In conclusion it may be noted that the stress- 

8'1" f I I I i 

l[b =0.8 

6! I ,I 
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t~ 4 i 
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0.-------1 
-0.8 

/ \ 
/ \ '"~\ / \ 

\ / 
\ / \ 

\ \\ / 
\ \  \ ~ / I 

-0.4 0 0.4 0.8 

x 2 / l  

Figure 9 Relative displacements across the debonded faces corresponding to the strain (Equation 62). 21/2 = 20, b/a = 0.8, 
v = v I = 0.3. Normal  displacements are shown by solid lines and tangential displacements by broken lines. 
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intensity factors  at  the debond  tips and the 
relative d isplacement  across the debond  are 
greatly influenced by any  inhomogene i ty  in the 
external stress field and by the extent o f  the 
debond  size. The  present  analysis was restricted 
to the mat r ix  and  inclusion having the same 
Poisson 's  ratio. The  influence of  relaxing this 
restriction is under  investigation and will be 
repor ted  in a separa te  communica t ion .  

A p p e n d i x  

The integral Equa t ion  13 m a y  be formal ly  
rewrit ten as 

b = ~o(u) 

= fn a'ff(x')fri j{Gk(x' x')},zdD(x') (A1) 

where 

ek, (x )Gik,t(x, x ' ) d f ) ( x ' )  U _ U /  = I fl ,1 / 

and 

~, alt~kl ~ ~.# B~ kl kl O'~/I(x) = Jt.*cqS.et.l.a.2 = + B i0Xl  + B ; l X 2  

(A2) 

In Equa t ion  A2 we have retained only terms 
up to  the first order  in x as required by the 
examples  considered in Section 5. I t  should be 
noted  that/~j (Equat ion  A1) will be a po lynomia l  

,1 (Equat ion  A2): o f  the same order  as a~ 

ij ~j //j = C~0 --1-- C l 0 X  l -~- C ~ l X  2 ( A 3 )  

where 

_ . .  R k l ~  1 
C~o = ~00 L~'klij 

- . .  R k l l ~ 2  17~klFi3 
C~Jo = *~'lOL"klij -~- ~Ol*"klij 

- " "  Rkl  l~4 lTlkl l~15 (A4) 
C~I = ~ l O ~ k l i j  71- ~Oll. .kli j  

The coefficients/5~u, which are wri t ten here in 
a more  simplified fo rm than  in the text 
(Equat ion  14) because o f  the order  of  x appear -  
ing Equa t ion  A2, are ob ta ined  by following a 
procedure  similar to tha t  adop ted  in [6]. In  fact, 
it can be shown tha t  

--m m m - m D~, o. = Iro(T;a, + T;m) + #(T;, o. + T;~.) 

(AS) 

where 

Ts F 
= A L - ( 3  -- 4v)(/~d, + I24 ) 

+ ll(d3 + ds) + 12(& + d,) 

23J l Q~. 26s= ] a= _ ~_Q~,i 

= A I -  (3 - 4v)(311 - 213)dl 

- -  (3 - 4v)(I  2 - 214)d= 

+ (311 -- 213)(d3 + ds) 

+ (12 -- 214)(d 4 + d6) 

43,1 Q~. 26j= ] 
a 2 a 2 b= Q~,i 

TLj = A [ - ( 3  - 4v)(I, - 214)g7 

- (3 - 4v)(I2 - 214)(b2/a2)G 

+ (/~ - 214)(d 9 + dll) 

+ (12 - 2/4)(d10 + d12) 

26j2 -k.7 46ji ~. ~2.'. a 2 ~lO J 

A [ - ( 3  - 4v)(a=/b2)(I1 -- 214)d v 

-- (3 - 40(12 - 214)d8 

+ (/1 -- 214)(d9 + d l l )  

+ (12 -- 214)(d10 + dl2) 

26jl Q~" - 46s2 Q5 kliq 

agb 2 ~ -  J 

A [ - ( 3  - 4v)(I, - 214)dl 

-- (3 -- 40(312 -- 2 I s ) 4  

+ (11 -- 214)(4 + ds) 

+ (312 - -  2Is)(d * + d6)  

2 6 j , - k .  46j= k.q 
- a2b=(21~ - 7 r -Q~=J  

(A6) 
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and 

A = - 1/[4#(1 - v)] 

( d , ,  d 7 )  = ( ~ j l ,  (~j2)(~ki(~ll 

(d~, 4 )  = G~, ~j,)G~;~ 

(d3, d9) = (r fijT)bk;,~;, 

(d4, d,o) = G~, G ) '~ ; 'L  

(d,, d,,) = @ .  ~)~.~1 

(A7) 

(d6, d,2) = (6j2, ~#l)~;i~k2 
The various integrals 11 ., 15 and Q~;i, t~kli . . . . .  , ~:~13 

appearing in Equations A6 are given by 

I~ = (b /a) / (1  -I- b /a)  

I2 = 1/(1 + b/a) 

13 = (b2/a2)(1 + a/2b)/(1 + b/a) 2 

I~ = (b/a)/[2(1 + b/a) 2] 

/5 = (1 + b/2a)/(1 + b/a) ~ (A8) 

= 2-~ ; ' - - i  - d O  

Q~;i 1 lkl;l, 
= 2~ f~  12 -~--d(a 

Q3~;; 3 t3~;i - -  1Q~7;i 
~ ~ 1  a 2 

Q~4" = a 2Q~``- 2Q8 ~" 

Q~;; 1 ( )k l i  1 kli 

Q~li 1_ t')kli 
- -  2 ~ , 1  

Q~. = 1 f~  3lkllli 
2---~ l,--i~-d(~ 

Q~. l r2'~ 2lklzl~ 
= 2-~J0 / 1 / 2 - ~  - d q ~  

1 Qkli 1 t'~kli kli 
,o  = ~ ~ - a , ~ ,  

Q;J.i b z Q~. 2Q~Zi 
1l ~ 

Qk, 3 r~,i _~ Q~i 
12 ~--- 2 ~ 2  - -  

O;,;i 1 f~  3llcllli 
13 = ~ 12-~-d~b 

Ii = cos~b,/2 = sin~b,l = 

4 1 1 4  

(A9) 

(#m :) + (l~/b:). 

This completes the evaluation of coefficients 
Q~ appearing in Equation 13. To obtain coef- 
ficients c~J~ appearing in Equation 19, we simply 
replace (~.,/3) in Equation A5 by (2, #). 

Next we obtain the expansion of function 
F,-(x2, x;) in powers of x2 and x; (Equation 40). 
Note that  Equation 39 may be rewritten as 

5(x~, x;) 

= (~0 ~ + ~fx;  + ~ x l  ~ + . . . ) r  xl)  

where 

(A10) 

x2) 

( )1 x % {  } + bZx---=%2 { } G(x, x') (Al l )  

Here a0 { } denotes the usual stress tensor 
operating on a vector, q~;k(x2, x;) may be 
expanded in powers of x2 and x~ for x and x' on 
F. Accordingly, we write 

c~,,(x2, x'2) = ~ r ~ x ~ ;  
~,fl 

(x,x'  ~ F) 

(A12) 

to evaluate 

6km6ti 22m2k61i (3 - -  4V),~imOkl + - -  
~2 ~4 K2 

2(3 - 4V).ffkXl6im 8XifffrnXtX, + + .~4 _~6 

4(6ki2"2; 1 Jr- (~kmYCiXl "t- I~klXiXm) 

(A16) 

To determine r~, we need 
expressions of  the following type: 

%-{ } akl { } G(x, x ' )  = ao.(v % say 

= 230(v~'1, + v~.;2) + #(v,'J + v)k.l) (A14) 

where 

i i i vi~ - 2&k;(G~, u + G2,2j)- v(Gk,o + Gt,kj) 

(A15) 
the change of sign being due to an interchange in 
the derivatives with respect to x with those with 
respect of x'. From the definition of  Green's 
function (Equation 6) it follows that 

1 [(~lm(~ki 2fffi.~kOlm 



where, as before 2, = (x~ - xi) ,  R = Ix - x '  I. 
Since xl = a ( 1 -  x~/b=) ~/2 on F may be 
expanded in a series of powers in x2, let us write 

~t?(i) ~. r, = 2,/2~ = E~o ) + "-.,o~2 + E['o)X'2 + . . .  

(A17) 
where 

and 

E~ ) = 0, E~ ) = 1, 

E ( l )  = iU ' ( I )  - -  /2b  2, 
l0 ~01 - -  a . . .  

E~o:) v(2) 0, 

(A18) 

where 

Z - ~2 - 1 + ~2 
a 2 

= 1 - ~ ( x ~ + x ; )  ~ + . . .  

From Equation A17, we also have 

(A19) 

Yc i ~c~ 
- -  = ~]mn X f  X2 (A20) 

m,n 

r/~ = ; F ( o E ( o .  --mn--m'n% 

( m  + m '  = ~ , n  + n" = fl) (A21) 

Thus we can rewrite Equation A16 as 

1 
(x'2 --  x2)2Gim,et(x, x ' )  - 

8rt#(1 - v) 

x {[6~,.6~ + 6k,.fiz, --  (3 - -  4V)~imak~]Z 

- -  2 7 Z  2 "-F 8"~iZmT~kT, lZ 3} (A22) 

where 

7 = 6~mr, r~ + 6~mZ~ -- (3 -- 4V)aimVe*~ 

-}- (~kigJmT~l A I- (~kmT~iZl "~- (~klZiTJm 

= Z tiklm ~q .pq ~22X2 ( s a y )  ( A 2 3 )  
p,q 

and 

~, ' l '  6~2~2 ) 

(say) 

~i'~m ~k'~l ~ I~efl X 2 X 2 

Z imkl p tq Spq X 2 X  2 
P,q 

It is easily verified that 

(A24) 

tiklm ik 

Jr- (~km~]il# -'[- akl~l=in~ --  (3 - 4Y)(~im.al'l# 

(A25) 

and 

S;q~ ~ ~,, k, 
= r l ~  B rl~6, 

( ~ + ~  = p ,  ~ + 6  = 

Substituting Equations A23 and 
Equation A22 gives 

q) (A26) 

A24 into 

(x; 2 i ~, ~.i~kl~,.,~ (A27) --  X2) Gm,kl = , ~13 - '~2,a-2 

where 

F~o mkl = A[Ao - 2 I ~  lm d- 8S~ k'] 

n imkl~ F[~ k' = A ( - 2 t i ~  'm + ~S,o ) 

Fg'~ k' = A ( - -  2tio~ tm -t- 8S~1 kl) (A28) 

a2 ti2~ t i k l m  2 F~"~ k~ = A - Aoa2/4b  4 + -~,oo 

) - 6 ~imkl -~ ~oo + 8s'2~ kt 

and 

Fgk' 

F~k l  

a2 
= A - Aoa2/4b  4 - 2fog2 tm + - ~ t ~  l~ 

o imkl 6a2 imkl~ + ~So~ - -~-s~ ) 

A ( - A o a 2 / 2 b 4  + ~a  t ~ l m -  2t]kltm 

12a2 imkl  8s~kt) 
- -  b 4  S o o  -Jr- 

A = 1/[8=~(1 -- v)] 

m 0 = (~lml~ki + 6k, .6,  -- (3 -- 4V)6im6kt 

(A29) 

Next, using Equation A27 in Equation A15, we 
have 

1 
v~ - (x; - x2)2& a'r ~ 2  (A30) 

(A31) 

Employing Equation A30 in Equation A 12 gives 
similarly 

1 
~{ }~k,{ }C(x,  x ' )  - (x l  - x2) 2 ~ ~'~'~''~'~ 

(A32) 
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where 
~ejikl 

(A33) 

Substituting Equation A32 into Equation A11, 
we obtain the required power series expansion 
for ~bik(x2, x~) in the form of Equation A12 
where the expansion coefficients are given by 

r~ = (1/a)f~ lkl 

ril% = (1/a)~illo kl --]- (1/b2)6~o k' 

r~ (1/a)f~ ~k' + ( l / b 2 ) ~  k2 (A34) 

ik 1 ilkl r20 = (1/a)(6~o kl - ~-~6oo ) + (11b2)6~ k' 

r~ = (l/a)~il '(  1 + (1/b2)t~[0k2 + (1/b2)6~1 k' 

+ (a/b4)6~o k2 

/o~ = (1/a)6~o~2 k' + (1/b2)6~o~1 k2, etc 

Finally, it is easy to show from Equations A10 
and A12 that 

Fi(x2, x2) = ~ ~,mn.~2 "~'(') v'm vln.~,2 (A35) 
m,n 

where 

~(poq = E ygmr~ km'(m' = q - m) (A36) 
m<q 

Thus the coefficients rm,'J and a~ are also 
determined. 
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